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Structure of a nematic liquid crystal between aligning walls
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The structure of a model nematic liquid crystal confined between two symmetric aligning walls has been
investigated using density-functional theory. In the case where wall-particle and particle-particle potentials
favor different orientations at the surface, their relative ranges are found to play a crucial role in determining
the equilibrium director configuration. If the surface interaction is the longer ranged, it will align the nematic
fairly uniformly throughout the whole sample, along a direction close to that which we would obtain if the wall
were the sole source of anchoring. If, on the other hand, the ranges of the two interactions are comparable,
anchoring at the surfaces will still be dominated by the wall potential but the director will r@tageneral,
incompletely towards the orientation favored by the intermolecular potential, over a distance of the order of
the molecular diameter, thereby producing a strong subsurface deformation. In this context | will critically
discuss some related theoretical wdr81063-651X97)05202-1

PACS numbes): 61.30.Gd, 61.30.Cz

Practical as well as fundamental considerations have corderlying assumptions of uniaxiality, uniformity of the order
spired to produce a lasting interest in the surface behavior gfarameter, and the very existence of a nematic director,
liquid crystals(LCs). The basic problem is to understand break down(more on this last point belowAn elastic de-
how a given surface modifies the properties of a given LCscription of surfaces can thus have, at best, a heuristic value
and, in particular, how it induces a given alignment, or an-(see in this connection the very illuminating discussion in
choring, thereof, for given values of experimentally control-[22]). However, surface-induced reorientation of the director
lable parameters, such as temperature and applied fiE]lds over distances of the order of molecular dimensions has been
Whereas technologists aim at making better devices, whicfound in simulationg23], hence some microscopic insight
at present rely mostly on finely tuned anchorj@g theorists  into the problem is clearly desirable.
pursue a description of the phenomenon in the framework of Recently, Barbero and co-workers have reported several
the statistical mechanics of nonuniform fluicB4]. Of par-  microscopic calculations of the structure of a nematic con-
ticular relevance to the latter is the detailed structure of thdined between two aligning plat§@4—26. These revealed
interface, which very often differs quite radically from the the occurrence of strong subsurface deformations if the inte-
bulk. molecular potential contains terms which couple orienta-

The most popular formalism, the elastic theory of Franktional and translational degrees of freedom. Such deforma-
and Oseen5-7], circumvents the problem by replacing the tions are a consequence of the competition between the
true surface by a structureless wall endowed with a boundaryifferent aligning tendencies of fluid-fluid and wall-fluid in-
condition[8]. This approach was, however, dealt a blow byteractions. The authors assumed, however, that the director
Oldano and Barbero’s discovery that the existence of a norerientation at the surface is fixed, which corresponds to tak-
zeroK 3 elastic constant should lead to formally infinite sub-ing an infinitely strong surface potential of zero range. How
surface deformation®,10]. Since, on the one hand, consis- this direct transplantation from elastic theory may affect re-
tency seems to require that tKg; term be included in the sults, is the point we wish to address here.
standard free enerdyl1] and, on the other hand, there is no  The role of different interaction ranges was first studied

fundamental reason whig; should vanish in genergll2— by Dubois-Violette and de Gennd27,28, who used a
15], we are faced with a paradox—the so-callel {5 prob-  mixed elastic-microscopic treatment. They found that a com-
lem.” Several solutions have been propo$&#6-23, and |  bination of strong short-ranged and weaker long-ranged an-

shall not discuss them here; suffice it to say that one of thershoring potentials, could give rise to large tilt angle distor-
still leaves open the possibility of stror(gut finite) defor-  tions near the surfacf28]. This work has recently been
mations in a surface layer of microscopic thickngk8]. The  extended by Alexe-lonescu and collaborat(®8], who in-
price to pay for this is the introduction of a new, higher- vestigated the stability of uniform and nonuniform tilt angle
order, elastic constant. profiles for different strengths of the short-ranged surface
In my view, it is doubtful that the question of whether potential. In this paper we present what is, to our knowledge,
strong subsurface deformations are real, or a mere artifacthe first density-functional calculation of the structure of a
will ever be resolved satisfactorily within elastic theory: this nematic film between aligning walls, using the theory of
is, strictly speaking, not valid near a surface, where its unTelo da Gamd30-32. This is just briefly sketched here,
and we refer the reader to the original references for details.
The grand potential free enerd® of a nonuniform, one
*Present address: Cavendish Laboratory, Madingley Road, Cangomponent fluid confined between two plates is the mini-
bridge CB3 OHE, United Kingdom. mum of the functional
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wherer;=(X;,Y;,z), and we have defined a “perturbative”
whereS is the area of the interface(z,») is the density- interaction
orientational profile in the presence of .the.external pqtential Gp(r1,01,12,02) = (I1,01,15,05) = Pref(r1,r2). (3)
Vex(Z,w) and w is the chemical potentiak is the position
coordinate along the normal to the plates, located
z=—d/2 andz=d/2, andw= (¢, 0, x) is the set of orienta-
tion coordinategEuler angles of a molecule[33]. (In the
present model molecules have rodlike symmetry, @énahd
0 are then just the azimuthal and polar angles, respectjvely. :f
FIp(z.)] is a unique functional of the density which is Frelp(z.0)]= | dZ Qo frer(p(2,0)). @)

independent of the external potentials and represents the ify \what follows we shall consider the simple generalized

trinsic Helmholtz free energy of the inhomogeneous fluid.\ajer-Saupe model characterized by the poterigal
The mean-field approximation for a fluid characterized by a

Cien ; : <
pairwise intermolecular potentiakp(ri,wq,r,,w,), yields te, Iso

[34] ¢ref(r)=[0, r>o 5

a{n Eq..(2), ]—‘ref[p(z,.w)] cprrespond_s toa re:fer_ence system
In which the particles interact via a pairwise potential
drei(r1,r,) and the density is constrained to bz, ). This
is treated in a local-density approximation

0, r<o

el
d)p(rvwlva): r r
o 6

?) {Po[cog w1, w1) ]+ Py[COd w5, w17) ]}, >0

6
Pylcogwy,wy)]

(6)
+C

whereo is the hard-sphere diametes;, is the direction of  \here f(z,») is the orientational distribution function de-
the intermolecular vector, ariél,(x) is the second Legendre fined throughp(z,») = p(2) }(z,®) (A>=fAf(z w)dw and

polynomial. A and B are the strengths of the isotropic and : : ]
Maier-Saupe parts of the potential, respectively.is the fhsgp (Z.) ) 1S the free energy densny ofa h".’"d sphere system,
hich is given, for consistency with previous work, by the

strength of the coupling between the spatial and orientation : o L
dependences of the pair potenti@l>0 corresponds to pro- q\i/ercus-Yewck compressibility approximatig0]
late molecules, an€<0 to oblate moleculeg32]. In addi-

tion, we choose a wall potential which favors anchoring at

/4 rad (45°) to the normdi31] o 6£— 982+ 383
_P 3.y 1_ _ = 7> =5
fas(Tp)= 5| INA%p) = 1=In(1= &)+ =5 =5,

Veul(Z,®)=Viso(2) — Cy € Z sin26cosgp, 7 (9)

whereCy, is the strength of the anisotropic part of the poten-
tial, A is a range parameter, and we leave the isotropic patfnere A is the de Broglie thermal wavelength and
Viso(2) unspecified, for reasons discussed below. Finally, the. _ ml6pa? is the packing fraction.

Lree energy density of the reference system is approximate We assume that the director is always in fzelane, i.e.,
y that there are no twist distortions. Substitution of E(s,
(6), and(8) into Eq.(2), and of the resulting expression into
froi(p(2,0))=frs(p(2))+ p(2)ksT{IN[47F(z,)]), (8)  EQA.(1), then yields, via standard manipulatiofrg2]
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where thexy-averaged potentials are )
sz dw exf a1(z)P,(cosd) + ay(z)sin26cosp

mo

— ld=o + a5(2)sirPOcos2p], 17
®(2)=) _ (1D

7 |1>e where

2 1 _ B dr2

-3 H=o @z | dz(z-2)n(z)
*'@=1 | (12) 8

2 | dzage-zherz-2),

keT"J-ar2

and the three orientational order parameters in the

laboratory-fixed frame with the axis perpendicular to the (18)
bounding surfaces, are defined(g32] note the slightly dif-
ferent notation 3 B di2
a2~ e | dz @22 uz)
n(z)=(P,(cod)), (13
Cv__ (diz—
v(z) =(sin26cosp), (14) +kB_T[e (2+di/h g (di2=2)h (19
7(2) = (sirfHcos2p). (15)
3 2
In this first approach, and to make closer contact with earlier as(2)=7 kB_Tpfdlde ®(|z=2")7(2"). (20

work, we assume the density to be constant throughout the

film (i.e., take the density profile to be steplik&his avoids

all complications associated with wetting and adsorption The consistency equations for the order parameters, Egs.
phenomendfor a review see, e.g[35]), which, while cer-  (13)—(15), have been solved iteratively fa%/ks=2000 K,
tainly interesting in their own right, would likely obscure the B/kg=C/kg=600 K, po>=0.9, T=436 K; these are chosen
main points of the present study. Some additional justificaso as to position us in the nematic region of the LC phase
tion can be derived from the result that it is always possiblediagram[30]. Moreover,C>0 favors homeotropic anchor-

to choose an isotropic surface potential,(z) as will create  ing at the nematic free surfa¢@2] (or, what is equivalent in

a step-function density profile36]. X this type of theory, at an inert wallThe film thickness was
Minimizing Eq. (10) with respect tof (z,w) [30,32, we taken to bed=40c. The angular integrations were per-

obtain formed by 24 point Gauss-Legendre quadraf@@, and the
spatial integrals in Eq918)—(20) by the method described

t(z,0) = 7 lex ay(2)P,(cOS0) + a(2)sin20cosp in [38,39], with mesh sizé\z=0.1c. The tilt angle and order

parameters in the director frame are found by inverting Egs.
+ ag(z)sirf cos2p], (16)  (2.16 in [40]
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FIG. 2. UniaxialS and biaxialu order parameters vsfor the

FIG. 1. Tilt angle vsz for Cy /kg=600 K andéy,n=4.60 (solid systems in Fig. 1same symbo)s Note the enhanced nematic order
line); ywn= 460 (dashed ling and 6,y,=0.460 (dotted ling. Note at the surface with increasing range of the wall potential, and the
the dips at~o from the walls, corresponding to the range of the smallness of the biaxiality, whose modulus never exceed93.
intermolecular potential. The dotted-dashed curve is the second-
order elastic theory predictiofil6]. Inset: detail of the structure molecular potential is still strong and “sees” the interface,
near the left wall. In contrast to Fig. 3, the surface tilt angle from hencey rotates by~ 0.1 rad (~20°) in two surface layers
microscopic theory is always m/4; it is smaller the shorter ranged of thickness~ o. The tilt angle is thus considerably smaller

the surface potential. in the “bulk” than “at” the surfaces. We emphasize that
this isnot a K5 effect(as witness the disagreement between
1 2v(2) our results and the second-order elastic theory prediction
W)= =) (2D anything intrinsic to the LC alone, which would be present

independently ofs,y. Nor is it related to surface-induced
1 3 “melting” into the isotropic phase of the LC, which remains
S(z)= Z{ 7(z)+ Er(z)+3\/[ 7(2)— (12 7(2) ]+ V(z)z], nematic right up to the walls, sinc®(+d/2) never drops
22) below ~0.4 (see Figs. 2 and)4
It is interesting to compare our results with those of
Tjipto-Margo and Sullivan, who derived a Landau-de
3 3 Gennes free energy from a microscopic Helmholtz free en-
u(z)= \[Z[ 7(z)+ ET(Z) ergy functional42]. In a previous paper we generalized this
approach to the case of a LC in contact with a solid substrate
[43], where the anchoring energy contains an additional con-
—[ 72— (12 7(2)]*+ V(z)z], (23)  tribution due to the surface potential. In the spirit of Tjipto-

0.3 T T T
where S is the usual uniaxial nematic order paramter, and
u the biaxiality.

Given our choice of potentials, Eg&) and(6), we need s
to define what is meant by the range of an inverse power law; 0z b
following [41], we take the range of the intermolecular po- S ) L
tential to be the distance over which it decays to 1% ofits ¢« | 7 7
value at contacti.e., atr = o). This giveséyn=1.1o. Like-
wise, the range of the wall potential is
Swn=2AIn10=4.6\. Results for different surface potential
ranges and strengths are shown in Figs. 1-4. For complete-
ness we have also included the second-order elastic theory
prediction ([16], Eqg. (15) where, consistently with the
above, we have taken= o, andR=K5/K is given by Eq. %900 S0 oo 00
(58) in [15]. If Syp> Snns the wall will win over the LC'’s o
intrinsic tendency to order homeotropically and produce
Y~ /4 rad (45°) throughout the whole film, the more ef- FiG. 3. Same as Fig. 1, but fo€, /kg=6000 K. Now
fectively the stronger and longer ranged the surface potentiaj(z)~=/4 for both Syy=4.60 and Syn=460. Moreover,
(compare Figs. 1 and)3If, however, dyyn< dyn, then the  y(+d/2)~=/4 in all cases, and the curve faky\=0.460 has
surface potential will already be very weak where the intershifted upwards considerably in consequence.

y(z)/m

01

20.0
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FIG. 4. UniaxialS and biaxialu order parameters &5 but now
for the systems in Fig. 8same symbo)s The longest-ranged wall
potential enhances order thoughout the whole film.

TABLE I. “Bulk” tilt angle from our microscopic calculation
[#(0)] and “surface” tilt angle from Tjipto-Margo and Sullivan’s
theory[42] (¢, for all cases shown in Figs. 1 and 2.

Cy/kg (K) dwn!/o Y(0)/ v
600 0.46 0.031 0.030
600 4.6 0.207 0.172
600 46 0.250 0.241
6000 0.46 0.118 0.172
6000 4.6 0.244 0.242
6000 46 0.250 0.249

see that Tjipto-Margo and Sullivan’s theory predicts the
“bulk” tilt angle fairly accurately, but completely misses
any strong subsurface deformations. This is a consequence of
the fact that by treating the surface contribution to the free
energy as in Eq(24), one is basically averaging over any
surface inhomogeneities. Changing the range of the wall po-
tential is then equivalent to renormalizing its strength.

Margo and Sullivan’s theory, we approximate this contribu- | conclude with some reflections on our results and the

tion [the last term in Eq(10)] as

d) (a2 (z+dI2)In (di2—2)/n
-C b dZ e '# +e 4z
vpV 2 f—d/z i 1

d
=—2Cva( iz))\(l—e‘d”‘)

=-2C +d
=—2Cypr| 25 A

= — CypSyAsin2iyy, (24)

where = (+d/2) andS,=S(*d/2) is the surface nem-
atic order parameter measured relative to the direetat.

“ K13 problem.” In microscopic theory there is no natural
lower bound on the length scale over which distortions can
occur, i.e., over which the order parameter profiles can be
inhomogeneous. One can alwagsmally define a nematic
director[via Eqg. (21) or equivalen}, but it is by no means
clear whether this has any physical significafice, whether
one is still dealing with a nematic in the usual sen&ecall
that, in elastic theory, the director is defined as the average
molecular orientation inside a mesoscopic volume element
whose actual size is always left unspecified, but which is
assumed to contain “enough” molecules. Finally, by its very
essencel ;3 is a bulklike quantity(but seq 44] for a dissent-

ing view, subsequently elaborated[i22]): indeed, it arises

as a coefficient in the expansion of thelk free energy den-
sity of deformation in the Frank-Oseen theory. It is only by

(Here we have neglected biaxiality, as it is generally small. virtue of Gauss’ theorem that the corresponding term in the

The (tilt-angle-dependent part of theurface term in the free

free energy acquires a “surfacelike” forri.e., it is trans-

energy is then, for our choice of intermolecular interactionsformed into a surface intega[45]. As already noted by
Egs. (5) and (6) (we consider only one solid surface for Barbero, Evangelista, and Porii25], a nonzeroK,; is

simplicity),
fw=Wsin2yny+w,P5(coshy), (25
with [43]
W=~} CypSwh, (26)
W= < Cp?Syor” @)

The equilibrium tilt angle is then found by minimizing Eq.
(25), whence

"2 37Cp*’ (28)

where \* =)\ o. Note that Yy does not depend oy,

merely an indication that the intermolecular potential con-
tains terms which favor a specific alignment at a surface. My
major conclusion is that one should be extremely cautious
about using the results of microscopic theories in which
near-surface deformations exist, in order to draw conclusions
about the effect or otherwise of th€,; surfacelike term
(indeed, Yokoyam&22] has recently claimed thd€,5 is an
artifact of the phenomenological free energy expansion,
which vanishes if the same is properly derived from density-
functional theory.
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