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Structure of a nematic liquid crystal between aligning walls

P. I. C. Teixeira*
FOM Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands

~Received 7 August 1996; revised manuscript received 23 October 1996!

The structure of a model nematic liquid crystal confined between two symmetric aligning walls has been
investigated using density-functional theory. In the case where wall-particle and particle-particle potentials
favor different orientations at the surface, their relative ranges are found to play a crucial role in determining
the equilibrium director configuration. If the surface interaction is the longer ranged, it will align the nematic
fairly uniformly throughout the whole sample, along a direction close to that which we would obtain if the wall
were the sole source of anchoring. If, on the other hand, the ranges of the two interactions are comparable,
anchoring at the surfaces will still be dominated by the wall potential but the director will rotate~in general,
incompletely! towards the orientation favored by the intermolecular potential, over a distance of the order of
the molecular diameter, thereby producing a strong subsurface deformation. In this context I will critically
discuss some related theoretical work.@S1063-651X~97!05202-1#

PACS number~s!: 61.30.Gd, 61.30.Cz
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Practical as well as fundamental considerations have c
spired to produce a lasting interest in the surface behavio
liquid crystals ~LCs!. The basic problem is to understan
how a given surface modifies the properties of a given L
and, in particular, how it induces a given alignment, or a
choring, thereof, for given values of experimentally contr
lable parameters, such as temperature and applied fields@1#.
Whereas technologists aim at making better devices, wh
at present rely mostly on finely tuned anchoring@2#, theorists
pursue a description of the phenomenon in the framewor
the statistical mechanics of nonuniform fluids@3,4#. Of par-
ticular relevance to the latter is the detailed structure of
interface, which very often differs quite radically from th
bulk.

The most popular formalism, the elastic theory of Fra
and Oseen@5–7#, circumvents the problem by replacing th
true surface by a structureless wall endowed with a bound
condition @8#. This approach was, however, dealt a blow
Oldano and Barbero’s discovery that the existence of a n
zeroK13 elastic constant should lead to formally infinite su
surface deformations@9,10#. Since, on the one hand, consi
tency seems to require that theK13 term be included in the
standard free energy@11# and, on the other hand, there is n
fundamental reason whyK13 should vanish in general@12–
15#, we are faced with a paradox—the so-called ‘‘K13 prob-
lem.’’ Several solutions have been proposed@16–22#, and I
shall not discuss them here; suffice it to say that one of th
still leaves open the possibility of strong~but finite! defor-
mations in a surface layer of microscopic thickness@16#. The
price to pay for this is the introduction of a new, highe
order, elastic constant.

In my view, it is doubtful that the question of whethe
strong subsurface deformations are real, or a mere arti
will ever be resolved satisfactorily within elastic theory: th
is, strictly speaking, not valid near a surface, where its

*Present address: Cavendish Laboratory, Madingley Road, C
bridge CB3 0HE, United Kingdom.
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derlying assumptions of uniaxiality, uniformity of the orde
parameter, and the very existence of a nematic direc
break down~more on this last point below!. An elastic de-
scription of surfaces can thus have, at best, a heuristic v
~see in this connection the very illuminating discussion
@22#!. However, surface-induced reorientation of the direc
over distances of the order of molecular dimensions has b
found in simulations@23#, hence some microscopic insigh
into the problem is clearly desirable.

Recently, Barbero and co-workers have reported sev
microscopic calculations of the structure of a nematic c
fined between two aligning plates@24–26#. These revealed
the occurrence of strong subsurface deformations if the i
molecular potential contains terms which couple orien
tional and translational degrees of freedom. Such defor
tions are a consequence of the competition between
different aligning tendencies of fluid-fluid and wall-fluid in
teractions. The authors assumed, however, that the dire
orientation at the surface is fixed, which corresponds to t
ing an infinitely strong surface potential of zero range. Ho
this direct transplantation from elastic theory may affect
sults, is the point we wish to address here.

The role of different interaction ranges was first studi
by Dubois-Violette and de Gennes@27,28#, who used a
mixed elastic-microscopic treatment. They found that a co
bination of strong short-ranged and weaker long-ranged
choring potentials, could give rise to large tilt angle disto
tions near the surface@28#. This work has recently been
extended by Alexe-Ionescu and collaborators@29#, who in-
vestigated the stability of uniform and nonuniform tilt ang
profiles for different strengths of the short-ranged surfa
potential. In this paper we present what is, to our knowled
the first density-functional calculation of the structure of
nematic film between aligning walls, using the theory
Telo da Gama@30–32#. This is just briefly sketched here
and we refer the reader to the original references for deta
The grand potential free energyV of a nonuniform, one
component fluid confined between two plates is the m
mum of the functional
m-
2876 © 1997 The American Physical Society
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V@r~z,v!#

S
5
F@r~z,v!#

S
1E

2d/2

d/2

dz dv r~z,v!

3FVextS z1
d

2
,v D1VextS d22z,v D G

2mE
2d/2

d/2

dz dv r~z,v!, ~1!

whereS is the area of the interface,r(z,v) is the density-
orientational profile in the presence of the external poten
Vext(z,v) andm is the chemical potential.z is the position
coordinate along the normal to the plates, located
z52d/2 andz5d/2, andv5(f,u,x) is the set of orienta-
tion coordinates~Euler angles! of a molecule@33#. ~In the
present model molecules have rodlike symmetry, andf and
u are then just the azimuthal and polar angles, respective!
F@r(z,v)# is a unique functional of the density which
independent of the external potentials and represents th
trinsic Helmholtz free energy of the inhomogeneous flu
The mean-field approximation for a fluid characterized b
pairwise intermolecular potential,f(r 1,v1 ,r2 ,v2), yields
@34#
e
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F@r~z,v!#5Fre f@r~z,v!#

1
1

2E2d/2

d/2

dz1dz2E dx1dy1dx2dy2

3E dv1dv2 r~r1 ,v1!fp~r1 ,v1 ,r2 ,v2!

3r~r2 ,v2!, ~2!

wherer i5(xi ,yi ,zi), and we have defined a ‘‘perturbative
interaction

fp~r1 ,v1 ,r2 ,v2!5f~r1 ,v1 ,r2 ,v2!2f re f~r1 ,r2!. ~3!

In Eq. ~2!, Fre f@r(z,v)# corresponds to a reference syste
in which the particles interact via a pairwise potent
f re f(r1 ,r2) and the density is constrained to ber(z,v). This
is treated in a local-density approximation

Fre f@r~z,v!#5E dz dv f re f„r~z,v!…. ~4!

In what follows we shall consider the simple generaliz
Maier-Saupe model characterized by the potential@32#

f re f~r !5H 1`, r<s

0, r.s
~5!
fp~r ,v1 ,v2!55
0, r<s

2AS s

r D
6

2BS s

r D
6

P2@cos~v1 ,v2!#

1CS s

r D
6

$P2@cos~v1 ,v12!#1P2@cos~v2 ,v12!#%, r.s

~6!
-

m,
e

d

o

wheres is the hard-sphere diameter,v12 is the direction of
the intermolecular vector, andP2(x) is the second Legendr
polynomial.A andB are the strengths of the isotropic an
Maier-Saupe parts of the potential, respectively.C is the
strength of the coupling between the spatial and orientatio
dependences of the pair potential:C.0 corresponds to pro
late molecules, andC,0 to oblate molecules@32#. In addi-
tion, we choose a wall potential which favors anchoring
p/4 rad (45°) to the normal@31#

Vext~z,v!5Viso~z!2CV e
2z/lsin2ucosf, ~7!

whereCV is the strength of the anisotropic part of the pote
tial, l is a range parameter, and we leave the isotropic
Viso(z) unspecified, for reasons discussed below. Finally,
free energy density of the reference system is approxim
by

f re f„r~z,v!…5 f hs„r~z!…1r~z!kBT^ ln@4p f̂ ~z,v!#&, ~8!
al

t

-
rt
e
ed

where f̂ (z,v) is the orientational distribution function de

fined throughr(z,v)5r(z) f̂ (z,v), ^A&5*A f̂ (z,v)dv and
f hs„r(z)… is the free energy density of a hard-sphere syste
which is given, for consistency with previous work, by th
Percus-Yevick compressibility approximation@30#

f hs~T,r!5
r

b F ln~L3r!212 ln~12j!1
6j29j213j3

2~12j!3 G ,
~9!

where L is the de Broglie thermal wavelength an
j5p/6rs3 is the packing fraction.

We assume that the director is always in thexz plane, i.e.,
that there are no twist distortions. Substitution of Eqs.~5!,
~6!, and~8! into Eq. ~2!, and of the resulting expression int
Eq. ~1!, then yields, via standard manipulations@32#
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where thexy-averaged potentials are

F~z!5H ps2

2
, uzu<s

ps6

2z4
, uzu.s

~11!

F8~z!5H z2

s2 2
1

2
, uzu<s

1

2
, uzu.s

~12!

and the three orientational order parameters in
laboratory-fixed frame with thez axis perpendicular to the
bounding surfaces, are defined as~@32# note the slightly dif-
ferent notation!

h~z!5^P2~cosu!&, ~13!

n~z!5^sin2ucosf&, ~14!

t~z!5^sin2ucos2f&. ~15!

In this first approach, and to make closer contact with ear
work, we assume the density to be constant throughout
film ~i.e., take the density profile to be steplike!. This avoids
all complications associated with wetting and adsorpt
phenomena~for a review see, e.g.,@35#!, which, while cer-
tainly interesting in their own right, would likely obscure th
main points of the present study. Some additional justifi
tion can be derived from the result that it is always possi
to choose an isotropic surface potentialViso(z) as will create
a step-function density profile@36#.

Minimizing Eq. ~10! with respect tof̂ (z,v) @30,32#, we
obtain

f̂ ~z,v!5Z21exp@a1~z!P2~cosu!1a2~z!sin2ucosf

1a3~z!sin2ucos2f#, ~16!
e

r
he

n

-
e

Z5E dv exp@a1~z!P2~cosu!1a2~z!sin2ucosf

1a3~z!sin2ucos2f#, ~17!

where

a1~z!5
B

kBT
rE

2d/2

d/2

dz F~ uz2z8u!h~z8!

2
C

kBT
rE

2d/2

d/2

dz F~ uz2z8u!F8~ uz2z8u!,

~18!

a2~z!5
3

4

B

kBT
rE

2d/2

d/2

dz F~ uz2z8u!n~z8!

1
CV

kBT
@e2~z1d/2!/l1e2~d/22z!/l#, ~19!

a3~z!5
3

4

B

kBT
rE

2d/2

d/2

dz F~ uz2z8u!t~z8!. ~20!

The consistency equations for the order parameters,
~13!–~15!, have been solved iteratively forA/kB52000 K,
B/kB5C/kB5600 K, rs350.9, T5436 K; these are chose
so as to position us in the nematic region of the LC ph
diagram@30#. Moreover,C.0 favors homeotropic anchor
ing at the nematic free surface@32# ~or, what is equivalent in
this type of theory, at an inert wall!. The film thickness was
taken to bed540s. The angular integrations were pe
formed by 24 point Gauss-Legendre quadrature@37#, and the
spatial integrals in Eqs.~18!–~20! by the method described
in @38,39#, with mesh sizeDz50.1s. The tilt angle and order
parameters in the director frame are found by inverting E
~2.16! in @40#
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c~z!5
1

2
tan21

2n~z!

2h~z!2t~z!
, ~21!

S~z!5
1

4 H h~z!1
3

2
t~z!13A@h~z!2~1/2!t~z!#21n~z!2J ,

~22!

m~z!5A3

4H h~z!1
3

2
t~z!

2A@h~z!2~1/2!t~z!#21n~z!2J , ~23!

whereS is the usual uniaxial nematic order paramter, a
m the biaxiality.

Given our choice of potentials, Eqs.~5! and~6!, we need
to define what is meant by the range of an inverse power l
following @41#, we take the range of the intermolecular p
tential to be the distance over which it decays to 1% of
value at contact~i.e., atr5s). This givesdNN.1.1s. Like-
wise, the range of the wall potential i
dWN52l ln10.4.6l. Results for different surface potentia
ranges and strengths are shown in Figs. 1–4. For comp
ness we have also included the second-order elastic th
prediction „@16#, Eq. ~15!… where, consistently with the
above, we have takenb5s, andR5K13/K is given by Eq.
~58! in @15#. If dWN@dNN , the wall will win over the LC’s
intrinsic tendency to order homeotropically and produ
c;p/4 rad (45°) throughout the whole film, the more e
fectively the stronger and longer ranged the surface pote
~compare Figs. 1 and 3!. If, however,dWN&dNN , then the
surface potential will already be very weak where the int

FIG. 1. Tilt angle vsz for CV /kB5600 K anddWN54.6s ~solid
line!; dWN546s ~dashed line!; anddWN50.46s ~dotted line!. Note
the dips at;s from the walls, corresponding to the range of t
intermolecular potential. The dotted-dashed curve is the sec
order elastic theory prediction@16#. Inset: detail of the structure
near the left wall. In contrast to Fig. 3, the surface tilt angle fro
microscopic theory is always&p/4; it is smaller the shorter range
the surface potential.
d

;

s

te-
ry

e
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molecular potential is still strong and ‘‘sees’’ the interfac
hencec rotates by;0.1p rad (;20°) in two surface layers
of thickness;s. The tilt angle is thus considerably smalle
in the ‘‘bulk’’ than ‘‘at’’ the surfaces. We emphasize tha
this isnot aK13 effect ~as witness the disagreement betwe
our results and the second-order elastic theory prediction! or
anything intrinsic to the LC alone, which would be prese
independently ofdWN . Nor is it related to surface-induce
‘‘melting’’ into the isotropic phase of the LC, which remain
nematic right up to the walls, sinceS(6d/2) never drops
below;0.4 ~see Figs. 2 and 4!.

It is interesting to compare our results with those
Tjipto-Margo and Sullivan, who derived a Landau-d
Gennes free energy from a microscopic Helmholtz free
ergy functional@42#. In a previous paper we generalized th
approach to the case of a LC in contact with a solid subst
@43#, where the anchoring energy contains an additional c
tribution due to the surface potential. In the spirit of Tjipt

d-

FIG. 2. UniaxialS and biaxialm order parameters vsz for the
systems in Fig. 1~same symbols!. Note the enhanced nematic ord
at the surface with increasing range of the wall potential, and
smallness of the biaxiality, whose modulus never exceeds;0.03.

FIG. 3. Same as Fig. 1, but forCV /kB56000 K. Now
c(z)'p/4 for both dWN54.6s and dWN546s. Moreover,
c(6d/2)'p/4 in all cases, and the curve fordWN50.46s has
shifted upwards considerably in consequence.
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Margo and Sullivan’s theory, we approximate this contrib
tion @the last term in Eq.~10!# as

2CVrnS 6
d

2D E2d/2

d/2

dz@e2~z1d/2!/l1e2~d/22z!/l#

522CVrnS 6
d

2Dl~12e2d/l!

522CVrnS 6
d

2D l̄

52CVrSWl̄sin2cW , ~24!

wherecW5c(6d/2) andSW5S(6d/2) is the surface nem
atic order parameter measured relative to the director@42#.
~Here we have neglected biaxiality, as it is generally sma!
The ~tilt-angle-dependent part of the! surface term in the free
energy is then, for our choice of intermolecular interactio
Eqs. ~5! and ~6! ~we consider only one solid surface fo
simplicity!,

f W5Wsin2cW1w2P2~coscW!, ~25!

with @43#

W52 1
2 CVrSWl̄, ~26!

w252
p

8
Cr2SWs4. ~27!

The equilibrium tilt angle is then found by minimizing Eq
~25!, whence

cW
eq5

1

2
tan21

16CVl*

3pCr*
, ~28!

where l*5l̄/s. Note thatcW
eq does not depend onSW ,

which would have to be found self-consistently. Numeric
values ofcW

eq for the same ranges and strengths of the s
face potential as in Figs. 1 and 2, are given in Table I. W

FIG. 4. UniaxialS and biaxialm order parameters vsz, but now
for the systems in Fig. 3~same symbols!. The longest-ranged wal
potential enhances order thoughout the whole film.
-

.

,

l
r-
e

see that Tjipto-Margo and Sullivan’s theory predicts t
‘‘bulk’’ tilt angle fairly accurately, but completely misse
any strong subsurface deformations. This is a consequen
the fact that by treating the surface contribution to the f
energy as in Eq.~24!, one is basically averaging over an
surface inhomogeneities. Changing the range of the wall
tential is then equivalent to renormalizing its strength.

I conclude with some reflections on our results and
‘‘ K13 problem.’’ In microscopic theory there is no natur
lower bound on the length scale over which distortions c
occur, i.e., over which the order parameter profiles can
inhomogeneous. One can alwaysformally define a nematic
director @via Eq. ~21! or equivalent#, but it is by no means
clear whether this has any physical significance~i.e., whether
one is still dealing with a nematic in the usual sense!. Recall
that, in elastic theory, the director is defined as the aver
molecular orientation inside a mesoscopic volume elem
whose actual size is always left unspecified, but which
assumed to contain ‘‘enough’’ molecules. Finally, by its ve
essence,K13 is a bulklike quantity~but see@44# for a dissent-
ing view, subsequently elaborated in@22#!: indeed, it arises
as a coefficient in the expansion of thebulk free energy den-
sity of deformation in the Frank-Oseen theory. It is only
virtue of Gauss’ theorem that the corresponding term in
free energy acquires a ‘‘surfacelike’’ form~i.e., it is trans-
formed into a surface integral! @45#. As already noted by
Barbero, Evangelista, and Ponti@25#, a nonzeroK13 is
merely an indication that the intermolecular potential co
tains terms which favor a specific alignment at a surface.
major conclusion is that one should be extremely cauti
about using the results of microscopic theories in wh
near-surface deformations exist, in order to draw conclusi
about the effect or otherwise of theK13 surfacelike term
~indeed, Yokoyama@22# has recently claimed thatK13 is an
artifact of the phenomenological free energy expansi
which vanishes if the same is properly derived from dens
functional theory!.
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TABLE I. ‘‘Bulk’’ tilt angle from our microscopic calculation
@c(0)# and ‘‘surface’’ tilt angle from Tjipto-Margo and Sullivan’s
theory @42# (cW

eq), for all cases shown in Figs. 1 and 2.

CV /kB ~K! dWN /s c(0)/p cW
eq/p

600 0.46 0.031 0.030
600 4.6 0.207 0.172
600 46 0.250 0.241
6000 0.46 0.118 0.172
6000 4.6 0.244 0.242
6000 46 0.250 0.249
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